Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Semi-supervised Logistic Learning Based on Exponential Tilt Mixture Models (1906.07882v1)

Published 19 Jun 2019 in stat.ML and cs.LG

Abstract: Consider semi-supervised learning for classification, where both labeled and unlabeled data are available for training. The goal is to exploit both datasets to achieve higher prediction accuracy than just using labeled data alone. We develop a semi-supervised logistic learning method based on exponential tilt mixture models, by extending a statistical equivalence between logistic regression and exponential tilt modeling. We study maximum nonparametric likelihood estimation and derive novel objective functions which are shown to be Fisher consistent. We also propose regularized estimation and construct simple and highly interpretable EM algorithms. Finally, we present numerical results which demonstrate the advantage of the proposed methods compared with existing methods.

Citations (3)

Summary

We haven't generated a summary for this paper yet.