Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 28 tok/s
GPT-5 High 35 tok/s Pro
GPT-4o 94 tok/s
GPT OSS 120B 476 tok/s Pro
Kimi K2 190 tok/s Pro
2000 character limit reached

On the discreet spectrum of fractional quantum hydrogen atom in two dimensions (1906.06959v1)

Published 17 Jun 2019 in cond-mat.stat-mech, math-ph, math.MP, and quant-ph

Abstract: We consider a fractional generalization of two-dimensional (2D) quantum-mechanical Kepler problem corresponding to 2D hydrogen atom. Our main finding is that the solution for discreet spectrum exists only for $\mu>1$ (more specifically $1 < \mu \leq 2$, where $\mu=2$ corresponds to "ordinary" 2D hydrogenic problem), where $\mu$ is the L\'evy index. We show also that in fractional 2D hydrogen atom, the orbital momentum degeneracy is lifted so that its energy starts to depend not only on principal quantum number $n$ but also on orbital $m$. To solve the spectral problem, we pass to the momentum representation, where we apply the variational method. This permits to obtain approximate analytical expressions for eigenvalues and eigenfunctions with very good accuracy. Latter fact has been checked by numerical solution of the problem. We also found the new integral representation (in terms of complete elliptic integrals) of Schr\"odinger equation for fractional hydrogen atom in momentum space. We point to the realistic physical systems like bulk semiconductors as well as their heterostructures, where obtained results can be used.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)