Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 38 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 469 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Calibration of Local-Stochastic Volatility Models by Optimal Transport (1906.06478v4)

Published 15 Jun 2019 in q-fin.MF and math.OC

Abstract: In this paper, we study a semi-martingale optimal transport problem and its application to the calibration of Local-Stochastic Volatility (LSV) models. Rather than considering the classical constraints on marginal distributions at initial and final time, we optimise our cost function given the prices of a finite number of European options. We formulate the problem as a convex optimisation problem, for which we provide a PDE formulation along with its dual counterpart. Then we solve numerically the dual problem, which involves a fully non-linear Hamilton-Jacobi-BeLLMan equation. The method is tested by calibrating a Heston-like LSV model with simulated data and foreign exchange market data.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.