Ignorance is Cheap: From Black Hole Entropy To Energy-Minimizing States In QFT (1906.05299v2)
Abstract: Behind certain marginally trapped surfaces one can construct a geometry containing an extremal surface of equal, but not larger area. This construction underlies the Engelhardt-Wall proposal for explaining Bekenstein-Hawking entropy as a coarse-grained entropy. The construction can be proven to exist classically but fails if the Null Energy Condition is violated. Here we extend the coarse-graining construction to semiclassical gravity. Its validity is conjectural, but we are able to extract an interesting nongravitational limit. Our proposal implies Wall's ant conjecture on the minimum energy of a completion of a quantum field theory state on a half-space. It further constrains the properties of the minimum energy state; for example, the minimum completion energy must be localized as a shock at the cut. We verify that the predicted properties hold in a recent explicit construction of Ceyhan and Faulkner, which proves our conjecture in the nongravitational limit.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.