Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 109 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

On the Spectrality and Spectral Expansion of the Non-self-adjoint Mathieu-Hill Operator in All Real Line (1906.04912v2)

Published 10 Jun 2019 in math.SP

Abstract: In this paper we investigate the non-self-adjoint operator H generated in all real line by the Mathieu-Hill equation with a complex-valued potential. We find a necessary and sufficient conditions on the potential for which H has no spectral singularity at infinity and it is an asymptotically spectral operator. Moreover, we give a detailed classification, stated in term of the potential, for the form of the spectral decomposition of the operator H by investigating the essential spectral singularities.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)