Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multiple instance learning with graph neural networks (1906.04881v1)

Published 12 Jun 2019 in cs.LG and stat.ML

Abstract: Multiple instance learning (MIL) aims to learn the mapping between a bag of instances and the bag-level label. In this paper, we propose a new end-to-end graph neural network (GNN) based algorithm for MIL: we treat each bag as a graph and use GNN to learn the bag embedding, in order to explore the useful structural information among instances in bags. The final graph representation is fed into a classifier for label prediction. Our algorithm is the first attempt to use GNN for MIL. We empirically show that the proposed algorithm achieves the state of the art performance on several popular MIL data sets without losing model interpretability.

Citations (57)

Summary

We haven't generated a summary for this paper yet.