Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-Instance Learning by Utilizing Structural Relationship among Instances (2102.01889v1)

Published 3 Feb 2021 in cs.LG and cs.CV

Abstract: Multi-Instance Learning(MIL) aims to learn the mapping between a bag of instances and the bag-level label. Therefore, the relationships among instances are very important for learning the mapping. In this paper, we propose an MIL algorithm based on a graph built by structural relationship among instances within a bag. Then, Graph Convolutional Network(GCN) and the graph-attention mechanism are used to learn bag-embedding. In the task of medical image classification, our GCN-based MIL algorithm makes full use of the structural relationships among patches(instances) in an original image space domain, and experimental results verify that our method is more suitable for handling medical high-resolution images. We also verify experimentally that the proposed method achieves better results than previous methods on five bechmark MIL datasets and four medical image datasets.

Citations (4)

Summary

We haven't generated a summary for this paper yet.