Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

On Mean Field Limit and Quantitative Estimates with a Large Class of Singular Kernels: Application to the Patlak-Keller-Segel Model (1906.04093v1)

Published 10 Jun 2019 in math.AP, math-ph, math.MP, and math.PR

Abstract: In this note, we propose a new relative entropy combination of the methods developed by P.--E. Jabin and Z.~Wang [Inventiones (2018)] and by S. Serfaty [Proc. Int. Cong. of Math, (2018) and references therein] to treat more general kernels in mean field limit theory. This new relative entropy may be understood as introducing appropriate weights in the relative entropy developed by P.-E. Jabin and Z. Wang (in the spirit of what has been recently developed by D.~Bresch and P.--E. Jabin [Annals of Maths (2018)]) to cancel the more singular terms involving the divergence of the flow. As an example, a full rigorous derivation (with quantitative estimates) of the Patlak-Keller-Segel model in some subcritical regimes is obtained. Our new relative entropy allows to treat singular potentials which combine large smooth part, small attractive singular part and large repulsive singular part.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.