Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 221 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Transfer Learning by Modeling a Distribution over Policies (1906.03574v1)

Published 9 Jun 2019 in cs.LG, cs.AI, and stat.ML

Abstract: Exploration and adaptation to new tasks in a transfer learning setup is a central challenge in reinforcement learning. In this work, we build on the idea of modeling a distribution over policies in a Bayesian deep reinforcement learning setup to propose a transfer strategy. Recent works have shown to induce diversity in the learned policies by maximizing the entropy of a distribution of policies (Bachman et al., 2018; Garnelo et al., 2018) and thus, we postulate that our proposed approach leads to faster exploration resulting in improved transfer learning. We support our hypothesis by demonstrating favorable experimental results on a variety of settings on fully-observable GridWorld and partially observable MiniGrid (Chevalier-Boisvert et al., 2018) environments.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.