Cylindric Hecke characters and Gromov-Witten invariants via the asymmetric six-vertex model (1906.02565v3)
Abstract: We construct a family of infinite-dimensional positive sub-coalgebras within the Grothendieck ring of Hecke algebras, when viewed as a Hopf algebra with respect to the induction and restriction functor. These sub-coalgebras have as structure constants the 3-point genus zero Gromov-Witten invariants of Grassmannians and are spanned by what we call cylindric Hecke characters, a particular set of virtual characters for whose computation we give several explicit combinatorial formulae. One of these expressions is a generalisation of Ram's formula for irreducible Hecke characters and uses cylindric broken rim hook tableaux. We show that the latter are in bijection with so-called `ice configurations' on a cylindrical square lattice, which define the asymmetric six-vertex model in statistical mechanics. A key ingredient of our construction is an extension of the boson-fermion correspondence to Hecke algebras and employing the latter we find new expressions for Jing's vertex operators of Hall-Littlewood functions in terms of the six-vertex transfer matrices on the infinite planar lattice.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.