Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 26 tok/s Pro
GPT-4o 98 tok/s
GPT OSS 120B 470 tok/s Pro
Kimi K2 216 tok/s Pro
2000 character limit reached

A note on dual modules and the transpose (1906.02345v1)

Published 5 Jun 2019 in math.RA and math.RT

Abstract: It is a classical result in matrix algebra that any square matrix over a field can be conjugated to its transpose by a symmetric matrix. For $F$ a non-Archimedean local field, Tupan used this to give an elementary proof that transpose inverse takes each irreducible smooth representation of ${\rm GL}_n(F)$ to its dual. We re-prove the matrix result and related observations using module-theoretic arguments. In addition, we write down a generalization that applies to central simple algebras with an involution of the first kind. We use this generalization to extend Tupan's method of argument to ${\rm GL}_n(D)$ for $D$ a quaternion division algebra over $F$.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.