Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 110 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Kimi K2 197 tok/s Pro
2000 character limit reached

Decision-Making in Reinforcement Learning (1906.00131v1)

Published 1 Jun 2019 in cs.AI

Abstract: In this research work, probabilistic decision-making approaches are studied, e.g. Bayesian and Boltzmann strategies, along with various deterministic exploration strategies, e.g. greedy, epsilon-Greedy and random approaches. In this research work, a comparative study has been done between probabilistic and deterministic decision-making approaches, the experiments are performed in OpenAI gym environment, solving Cart Pole problem. This research work discusses about the Bayesian approach to decision-making in deep reinforcement learning, and about dropout, how it can reduce the computational cost. All the exploration approaches are compared. It also discusses about the importance of exploration in deep reinforcement learning, and how improving exploration strategies may help in science and technology. This research work shows how probabilistic decision-making approaches are better in the long run as compared to the deterministic approaches. When there is uncertainty, Bayesian dropout approach proved to be better than all other approaches in this research work.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube