Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 90 tok/s
Gemini 2.5 Pro 29 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Generative Imaging and Image Processing via Generative Encoder (1905.13300v1)

Published 23 May 2019 in eess.IV, cs.CV, cs.LG, and stat.ML

Abstract: This paper introduces a novel generative encoder (GE) model for generative imaging and image processing with applications in compressed sensing and imaging, image compression, denoising, inpainting, deblurring, and super-resolution. The GE model consists of a pre-training phase and a solving phase. In the pre-training phase, we separately train two deep neural networks: a generative adversarial network (GAN) with a generator $\G$ that captures the data distribution of a given image set, and an auto-encoder (AE) network with an encoder $\EN$ that compresses images following the estimated distribution by GAN. In the solving phase, given a noisy image $x=\mathcal{P}(x*)$, where $x*$ is the target unknown image, $\mathcal{P}$ is an operator adding an addictive, or multiplicative, or convolutional noise, or equivalently given such an image $x$ in the compressed domain, i.e., given $m=\EN(x)$, we solve the optimization problem [ z*=\underset{z}{\mathrm{argmin}} |\EN(\G(z))-m|_22+\lambda|z|_22 ] to recover the image $x*$ in a generative way via $\hat{x}:=\G(z*)\approx x*$, where $\lambda>0$ is a hyperparameter. The GE model unifies the generative capacity of GANs and the stability of AEs in an optimization framework above instead of stacking GANs and AEs into a single network or combining their loss functions into one as in existing literature. Numerical experiments show that the proposed model outperforms several state-of-the-art algorithms.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.