Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 17 tok/s
GPT-5 High 21 tok/s Pro
GPT-4o 90 tok/s
GPT OSS 120B 468 tok/s Pro
Kimi K2 213 tok/s Pro
2000 character limit reached

Largest Inscribed Rectangles in Geometric Convex Sets (1905.13246v3)

Published 30 May 2019 in cs.CG, math.MG, and math.OC

Abstract: This paper considers the problem of finding maximum volume (axis-aligned) inscribed boxes in a compact convex set, defined by a finite number of convex inequalities, and presents optimization and geometric approaches for solving them. Several optimization models are developed that can be easily generalized to find other inscribed geometric shapes such as triangles, rhombi, and squares. To find the largest axis-aligned inscribed rectangles in the higher dimensions, an interior-point method algorithm is presented and analyzed. For 2-dimensional space, a parametrized optimization approach is developed to find the largest (axis-aligned) inscribed rectangles in convex sets. The optimization approach provides a uniform framework for solving a wide variety of relevant problems. Finally, two computational geometric $(1-\varepsilon)$--approximation algorithms with sub-linear running times are presented that improve the previous results.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)