Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 98 tok/s Pro
Kimi K2 226 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Convergence of uniform triangulations under the Cardy embedding (1905.13207v3)

Published 30 May 2019 in math.PR, math-ph, math.CV, and math.MP

Abstract: We consider an embedding of planar maps into an equilateral triangle $\Delta$ which we call the Cardy embedding. The embedding is a discrete approximation of a conformal map based on percolation observables that are used in Smirnov's proof of Cardy's formula. Under the Cardy embedding, the planar map induces a metric and an area measure on $\Delta$ and a boundary measure on $\partial \Delta$. We prove that for uniformly sampled triangulations, the metric and the measures converge jointly in the scaling limit to the Brownian disk conformally embedded into $\Delta$ (i.e., to the $\sqrt{8/3}$-Liouville quantum gravity disk). As part of our proof, we prove scaling limit results for critical site percolation on the uniform triangulations, in a quenched sense. In particular, we establish the scaling limit of the percolation crossing probability for a uniformly sampled triangulation with four boundary marked points.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)