Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 81 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Exploiting Uncertainty of Loss Landscape for Stochastic Optimization (1905.13200v1)

Published 30 May 2019 in cs.LG, math.OC, and stat.ML

Abstract: We introduce novel variants of momentum by incorporating the variance of the stochastic loss function. The variance characterizes the confidence or uncertainty of the local features of the averaged loss surface across the i.i.d. subsets of the training data defined by the mini-batches. We show two applications of the gradient of the variance of the loss function. First, as a bias to the conventional momentum update to encourage conformity of the local features of the loss function (e.g. local minima) across mini-batches to improve generalization and the cumulative training progress made per epoch. Second, as an alternative direction for "exploration" in the parameter space, especially, for non-convex objectives, that exploits both the optimistic and pessimistic views of the loss function in the face of uncertainty. We also introduce a novel data-driven stochastic regularization technique through the parameter update rule that is model-agnostic and compatible with arbitrary architectures. We further establish connections to probability distributions over loss functions and the REINFORCE policy gradient update with baseline in RL. Finally, we incorporate the new variants of momentum proposed into Adam, and empirically show that our methods improve the rate of convergence of training based on our experiments on the MNIST and CIFAR-10 datasets.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.