Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

NPTC-net: Narrow-Band Parallel Transport Convolutional Neural Network on Point Clouds (1905.12218v3)

Published 29 May 2019 in cs.CV and cs.LG

Abstract: Convolution plays a crucial role in various applications in signal and image processing, analysis, and recognition. It is also the main building block of convolution neural networks (CNNs). Designing appropriate convolution neural networks on manifold-structured point clouds can inherit and empower recent advances of CNNs to analyzing and processing point cloud data. However, one of the major challenges is to define a proper way to "sweep" filters through the point cloud as a natural generalization of the planar convolution and to reflect the point cloud's geometry at the same time. In this paper, we consider generalizing convolution by adapting parallel transport on the point cloud. Inspired by a triangulated surface-based method [Stefan C. Schonsheck, Bin Dong, and Rongjie Lai, arXiv:1805.07857.], we propose the Narrow-Band Parallel Transport Convolution (NPTC) using a specifically defined connection on a voxel-based narrow-band approximation of point cloud data. With that, we further propose a deep convolutional neural network based on NPTC (called NPTC-net) for point cloud classification and segmentation. Comprehensive experiments show that the proposed NPTC-net achieves similar or better results than current state-of-the-art methods on point cloud classification and segmentation.

Citations (3)

Summary

We haven't generated a summary for this paper yet.