Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Snooping Attacks on Deep Reinforcement Learning (1905.11832v2)

Published 28 May 2019 in cs.LG, cs.CV, and stat.ML

Abstract: Adversarial attacks have exposed a significant security vulnerability in state-of-the-art machine learning models. Among these models include deep reinforcement learning agents. The existing methods for attacking reinforcement learning agents assume the adversary either has access to the target agent's learned parameters or the environment that the agent interacts with. In this work, we propose a new class of threat models, called snooping threat models, that are unique to reinforcement learning. In these snooping threat models, the adversary does not have the ability to interact with the target agent's environment, and can only eavesdrop on the action and reward signals being exchanged between agent and environment. We show that adversaries operating in these highly constrained threat models can still launch devastating attacks against the target agent by training proxy models on related tasks and leveraging the transferability of adversarial examples.

Citations (23)

Summary

We haven't generated a summary for this paper yet.