Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Q learning for fooling neural networks (1811.05521v1)

Published 13 Nov 2018 in cs.LG, cs.AI, and stat.ML

Abstract: Deep learning models are vulnerable to external attacks. In this paper, we propose a Reinforcement Learning (RL) based approach to generate adversarial examples for the pre-trained (target) models. We assume a semi black-box setting where the only access an adversary has to the target model is the class probabilities obtained for the input queries. We train a Deep Q Network (DQN) agent which, with experience, learns to attack only a small portion of image pixels to generate non-targeted adversarial images. Initially, an agent explores an environment by sequentially modifying random sets of image pixels and observes its effect on the class probabilities. At the end of an episode, it receives a positive (negative) reward if it succeeds (fails) to alter the label of the image. Experimental results with MNIST, CIFAR-10 and Imagenet datasets demonstrate that our RL framework is able to learn an effective attack policy.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Mandar Kulkarni (13 papers)

Summary

We haven't generated a summary for this paper yet.