Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stochastic Proximal Langevin Algorithm: Potential Splitting and Nonasymptotic Rates (1905.11768v2)

Published 28 May 2019 in stat.ML, cs.LG, math.OC, math.ST, and stat.TH

Abstract: We propose a new algorithm---Stochastic Proximal Langevin Algorithm (SPLA)---for sampling from a log concave distribution. Our method is a generalization of the Langevin algorithm to potentials expressed as the sum of one stochastic smooth term and multiple stochastic nonsmooth terms. In each iteration, our splitting technique only requires access to a stochastic gradient of the smooth term and a stochastic proximal operator for each of the nonsmooth terms. We establish nonasymptotic sublinear and linear convergence rates under convexity and strong convexity of the smooth term, respectively, expressed in terms of the KL divergence and Wasserstein distance. We illustrate the efficiency of our sampling technique through numerical simulations on a Bayesian learning task.

Citations (24)

Summary

We haven't generated a summary for this paper yet.