Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Document Embeddings vs. Keyphrases vs. Terms: An Online Evaluation in Digital Library Recommender Systems (1905.11244v1)

Published 27 May 2019 in cs.IR and cs.DL

Abstract: Many recommendation algorithms are available to digital library recommender system operators. The effectiveness of algorithms is largely unreported by way of online evaluation. We compare a standard term-based recommendation approach to two promising approaches for related-article recommendation in digital libraries: document embeddings, and keyphrases. We evaluate the consistency of their performance across multiple scenarios. Through our recommender-as-a-service Mr. DLib, we delivered 33.5M recommendations to users of Sowiport and Jabref over the course of 19 months, from March 2017 to October 2018. The effectiveness of the algorithms differs significantly between Sowiport and Jabref (Wilcoxon rank-sum test; p < 0.05). There is a ~400% difference in effectiveness between the best and worst algorithm in both scenarios separately. The best performing algorithm in Sowiport (terms) is the worst performing in Jabref. The best performing algorithm in Jabref (keyphrases) is 70% worse in Sowiport, than Sowiport`s best algorithm (click-through rate; 0.1% terms, 0.03% keyphrases).

Citations (2)

Summary

We haven't generated a summary for this paper yet.