Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Meta-Learned Per-Instance Algorithm Selection in Scholarly Recommender Systems (1912.08694v1)

Published 18 Dec 2019 in cs.IR and cs.DL

Abstract: The effectiveness of recommender system algorithms varies in different real-world scenarios. It is difficult to choose a best algorithm for a scenario due to the quantity of algorithms available, and because of their varying performances. Furthermore, it is not possible to choose one single algorithm that will work optimally for all recommendation requests. We apply meta-learning to this problem of algorithm selection for scholarly article recommendation. We train a random forest, gradient boosting machine, and generalized linear model, to predict a best-algorithm from a pool of content similarity-based algorithms. We evaluate our approach on an offline dataset for scholarly article recommendation and attempt to predict the best algorithm per-instance. The best meta-learning model achieved an average increase in F1 of 88% when compared to the average F1 of all base-algorithms (F1; 0.0708 vs 0.0376) and was significantly able to correctly select each base-algorithm (Paired t-test; p < 0.1). The meta-learner had a 3% higher F1 when compared to the single-best base-algorithm (F1; 0.0739 vs 0.0717). We further perform an online evaluation of our approach, conducting an A/B test through our recommender-as-a-service platform Mr. DLib. We deliver 148K recommendations to users between January and March 2019. User engagement was significantly increased for recommendations generated using our meta-learning approach when compared to a random selection of algorithm (Click-through rate (CTR); 0.51% vs. 0.44%, Chi-Squared test; p < 0.1), however our approach did not produce a higher CTR than the best algorithm alone (CTR; MoreLikeThis (Title): 0.58%).

Citations (8)

Summary

We haven't generated a summary for this paper yet.