Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Usage of multiple RTL features for Earthquake prediction (1905.10805v1)

Published 26 May 2019 in stat.AP, cs.LG, eess.SP, and physics.data-an

Abstract: We construct a classification model that predicts if an earthquake with the magnitude above a threshold will take place at a given location in a time range 30-180 days from a given moment of time. A common approach is to use expert forecasts based on features like Region-Time-Length (RTL) characteristics. The proposed approach uses machine learning on top of multiple RTL features to take into account effects at various scales and to improve prediction accuracy. For historical data about Japan earthquakes 1992-2005 and predictions at locations given in this database the best model has precision up to ~ 0.95 and recall up to ~ 0.98.

Citations (6)

Summary

We haven't generated a summary for this paper yet.