Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Discovering Hidden Structure in High Dimensional Human Behavioral Data via Tensor Factorization (1905.08846v1)

Published 21 May 2019 in cs.LG and stat.ML

Abstract: In recent years, the rapid growth in technology has increased the opportunity for longitudinal human behavioral studies. Rich multimodal data, from wearables like Fitbit, online social networks, mobile phones etc. can be collected in natural environments. Uncovering the underlying low-dimensional structure of noisy multi-way data in an unsupervised setting is a challenging problem. Tensor factorization has been successful in extracting the interconnected low-dimensional descriptions of multi-way data. In this paper, we apply non-negative tensor factorization on a real-word wearable sensor data, StudentLife, to find latent temporal factors and group of similar individuals. Meta data is available for the semester schedule, as well as the individuals' performance and personality. We demonstrate that non-negative tensor factorization can successfully discover clusters of individuals who exhibit higher academic performance, as well as those who frequently engage in leisure activities. The recovered latent temporal patterns associated with these groups are validated against ground truth data to demonstrate the accuracy of our framework.

Citations (11)

Summary

We haven't generated a summary for this paper yet.