Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Smoothing quantile regressions (1905.08535v3)

Published 21 May 2019 in econ.EM and stat.ME

Abstract: We propose to smooth the entire objective function, rather than only the check function, in a linear quantile regression context. Not only does the resulting smoothed quantile regression estimator yield a lower mean squared error and a more accurate Bahadur-Kiefer representation than the standard estimator, but it is also asymptotically differentiable. We exploit the latter to propose a quantile density estimator that does not suffer from the curse of dimensionality. This means estimating the conditional density function without worrying about the dimension of the covariate vector. It also allows for two-stage efficient quantile regression estimation. Our asymptotic theory holds uniformly with respect to the bandwidth and quantile level. Finally, we propose a rule of thumb for choosing the smoothing bandwidth that should approximate well the optimal bandwidth. Simulations confirm that our smoothed quantile regression estimator indeed performs very well in finite samples.

Summary

We haven't generated a summary for this paper yet.