Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Smoothed estimating equations for instrumental variables quantile regression (1609.09033v1)

Published 28 Sep 2016 in stat.ME, econ.EM, math.ST, stat.AP, and stat.TH

Abstract: The moment conditions or estimating equations for instrumental variables quantile regression involve the discontinuous indicator function. We instead use smoothed estimating equations (SEE), with bandwidth $h$. We show that the mean squared error (MSE) of the vector of the SEE is minimized for some $h>0$, leading to smaller asymptotic MSE of the estimating equations and associated parameter estimators. The same MSE-optimal $h$ also minimizes the higher-order type I error of a SEE-based $\chi2$ test and increases size-adjusted power in large samples. Computation of the SEE estimator also becomes simpler and more reliable, especially with (more) endogenous regressors. Monte Carlo simulations demonstrate all of these superior properties in finite samples, and we apply our estimator to JTPA data. Smoothing the estimating equations is not just a technical operation for establishing Edgeworth expansions and bootstrap refinements; it also brings the real benefits of having more precise estimators and more powerful tests. Code for the estimator, simulations, and empirical examples is available from the first author's website.

Summary

We haven't generated a summary for this paper yet.