Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Existence of solutions for critical Choquard problem with singular coefficients (1905.08401v1)

Published 21 May 2019 in math.AP

Abstract: In this paper, we investigate the following fractional Choquard type equation: [ (- \Delta)ps\, u = \lambda\frac{|u|{r-2}u}{|x|\alpha}\,+\gamma \big(\int\Omega \frac{|u|q}{|x-y|\mu}dy\big) |u|{q-2}u \ \ \text{in } \Omega,\ \ u = 0 \ \text{in } \RN \setminus \Omega, ] where $\Omega$ is a bounded domain in $\RN$ with Lipschitz boundary, $p>1$, $0<s\<1$, $N>sp$, $0\leq\alpha\leq sp$, $0<\mu<N$,$\lambda, \gamma\>0$, $p\leq r\leq p*_\alpha$, $p\leq 2q\leq 2p_{\mu,s}*$, $p_\alpha*=\frac{(N-\alpha)p}{N-sp}$ and $p_{\mu,s}*=\frac{(N-\frac{\mu}{2})p}{N-sp}$ are the fractional critical Hardy-Sobolev and the critical exponents in the sense of Hardy-Littlewood-Sobolev inequality, respectively. Under some suitable assumptions, positive and sign-changing solutions are obtained.

Citations (2)

Summary

We haven't generated a summary for this paper yet.