Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 109 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

On non-local ergodic Jacobi semigroups: spectral theory, convergence-to-equilibrium and contractivity (1905.07832v2)

Published 20 May 2019 in math.PR, math.AP, and math.SP

Abstract: In this paper, we introduce and study non-local Jacobi operators, which generalize the classical (local) Jacobi operators. We show that these operators extend to generators of ergodic Markov semigroups with unique invariant probability measures and study their spectral and convergence properties. In particular, we derive a series expansion of the semigroup in terms of explicitly defined polynomials, which generalize the classical Jacobi orthogonal polynomials. In addition, we give a complete characterization of the spectrum of the non-self-adjoint generator and semigroup. We show that the variance decay of the semigroup is hypocoercive with explicit constants, which provides a natural generalization of the spectral gap estimate. After a random warm-up time, the semigroup also decays exponentially in entropy and is both hypercontractive and ultracontractive. Our proofs hinge on the development of commutation identities, known as intertwining relations, between local and non-local Jacobi operators and semigroups, with the local objects serving as reference points for transferring properties from the local to the non-local case.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.