Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 105 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Kimi K2 193 tok/s Pro
2000 character limit reached

Stochastic approximation with cone-contractive operators: Sharp $\ell_\infty$-bounds for $Q$-learning (1905.06265v2)

Published 15 May 2019 in cs.LG, math.OC, and stat.ML

Abstract: Motivated by the study of $Q$-learning algorithms in reinforcement learning, we study a class of stochastic approximation procedures based on operators that satisfy monotonicity and quasi-contractivity conditions with respect to an underlying cone. We prove a general sandwich relation on the iterate error at each time, and use it to derive non-asymptotic bounds on the error in terms of a cone-induced gauge norm. These results are derived within a deterministic framework, requiring no assumptions on the noise. We illustrate these general bounds in application to synchronous $Q$-learning for discounted Markov decision processes with discrete state-action spaces, in particular by deriving non-asymptotic bounds on the $\ell_\infty$-norm for a range of stepsizes. These results are the sharpest known to date, and we show via simulation that the dependence of our bounds cannot be improved in a worst-case sense. These results show that relative to a model-based $Q$-iteration, the $\ell_\infty$-based sample complexity of $Q$-learning is suboptimal in terms of the discount factor $\gamma$.

Citations (100)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)