Limits of Deepfake Detection: A Robust Estimation Viewpoint (1905.03493v1)
Abstract: Deepfake detection is formulated as a hypothesis testing problem to classify an image as genuine or GAN-generated. A robust statistics view of GANs is considered to bound the error probability for various GAN implementations in terms of their performance. The bounds are further simplified using a Euclidean approximation for the low error regime. Lastly, relationships between error probability and epidemic thresholds for spreading processes in networks are established.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.