Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Boundedness properties of maximal operators on Lorentz spaces (1905.03232v2)

Published 8 May 2019 in math.CA

Abstract: We study mapping properties of the centered Hardy--Littlewood maximal operator $\mathcal{M}$ acting on Lorentz spaces. Given $p \in (1,\infty)$ and a metric measure space $\mathfrak{X}$ we let $\Omegap_{\rm HL}(\mathfrak{X}) \subset [0,1]2$ be the set of all pairs $(\frac{1}{q},\frac{1}{r})$ such that $\mathcal{M}$ is bounded from $L{p,q}(\mathfrak{X})$ to $L{p,r}(\mathfrak{X})$. For each fixed $p$ all possible shapes of $\Omegap_{\rm HL}(\mathfrak{X})$ are characterized. Namely, we show that the boundary of $\Omegap_{\rm HL}(\mathfrak{X})$ either is empty or takes the form $${ \delta } \times [0, \lim_{u \rightarrow \delta} F(u)] \ \cup \ {(u, F(u)) : u \in (\delta, 1] },$$ where $\delta \in [0,1]$ and $F \colon [\delta, 1] \rightarrow [0,1]$ is concave, non-decreasing, and satisfying $F(u) \leq u$. Conversely, for each such $F$ we find $\mathfrak{X}$ such that $\mathcal{M}$ is bounded from $L{p,q}(\mathfrak{X})$ to $L{p,r}(\mathfrak{X})$ if and only if the point $(\frac{1}{q}, \frac{1}{r})$ lies on or under the graph of $F$, that is, $\frac{1}{q} \geq \delta$ and $\frac{1}{r} \leq F\big(\frac{1}{q}\big)$.

Summary

We haven't generated a summary for this paper yet.