Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Norms of maximal functions between generalized and classical Lorentz spaces (2110.13698v1)

Published 26 Oct 2021 in math.FA

Abstract: In this paper we calculate the norm of the generalized maximal operator $M_{\phi,\Lambda{\alpha}(b)}$, defined with $0 < \alpha < \infty$ and functions $b,\,\phi: (0,\infty) \rightarrow (0,\infty)$ for all measurable functions $f$ on ${\mathbb R}n$ by \begin{equation*} M_{\phi,\Lambda{\alpha}(b)}f(x) : = \sup_{Q \ni x} \frac{|f \chi_Q|{\Lambda{\alpha}(b)}}{\phi (|Q|)}, \qquad x \in {\mathbb R}n, \end{equation*} from ${\operatorname{G\Gamma}}(p,m,v)$ into $\Lambdaq(w)$. Here $\Lambda{\alpha}(b)$ and ${\operatorname{G\Gamma}}(p,m,w)$ are the classical and generalized Lorentz spaces, defined as a set of all measurable functions $f$ defined on ${\mathbb R}n$ for which $$ |f|{\Lambda{\alpha}(b)} = \bigg( \int_0{\infty} [f*(s)]{\alpha} b(s)\,ds \bigg){\frac{1}{\alpha}} < \infty \quad \mbox{and} \quad |f|{{\operatorname{G\Gamma}}(p,m,w)} = \bigg( \int_0{\infty} \bigg( \int_0x [f* (\tau)]p\,d\tau \bigg){\frac{m}{p}} v(x)\,dx \bigg){\frac{1}{m}} < \infty, $$ respectively. We reduce the problem to the solution of the inequality \begin{equation*} \bigg( \int_0{\infty} \big[ T{u,b}f* (x)\big]q \, w(x)\,dx\bigg){\frac{1}{q}} \le C \, \bigg( \int_0{\infty} \bigg( \int_0x [f* (\tau)]p\,d\tau \bigg){\frac{m}{p}} v(x)\,dx \bigg){\frac{1}{m}} \end{equation*} where $w$ and $v$ are weight functions on $(0,\infty)$. Here $f*$ is the non-increasing rearrangement of $f$ defined on ${\mathbb R}n$ and $T_{u,b}$ is the iterated Hardy-type operator involving suprema, which is defined for a measurable non-negative function $f$ on $(0,\infty)$ by $$ (T_{u,b} g)(t) : = \sup_{\tau \in [t,\infty)} \frac{u(\tau)}{B(\tau)} \int_0{\tau} g(s)b(s)\,ds,\qquad t \in (0,\infty), $$ where $u$ and $b$ are appropriate weight functions on $(0,\infty)$ and the function $B(t) : = \int_0t b(s)\,ds$ satisfies $0 < B(t) < \infty$ for every $t \in (0,\infty)$..

Summary

We haven't generated a summary for this paper yet.