Geometric scattering of a scalar particle moving on a curved surface in the presence of point defects (1905.01808v1)
Abstract: A nonrelativistic scalar particle that is constrained to move on an asymptotically flat curved surface undergoes a geometric scattering that is sensitive to the mean and Gaussian curvatures of the surface. A careful study of possible realizations of this phenomenon in typical condensed matter systems requires dealing with the presence of defects. We examine the effect of delta-function point defects residing on a curved surface ${S}$. In particular, we solve the scattering problem for a multi-delta-function potential in plane, which requires a proper regularization of divergent terms entering its scattering amplitude, and include the effects of nontrivial geometry of ${S}$ by treating it as a perturbation of the plane. This allows us to obtain analytic expressions for the geometric scattering amplitude for a surface consisting of one or more Gaussian bumps. In general the presence of the delta-function defects enhances the geometric scattering effects.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.