Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 102 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 30 tok/s
GPT-5 High 27 tok/s Pro
GPT-4o 110 tok/s
GPT OSS 120B 475 tok/s Pro
Kimi K2 203 tok/s Pro
2000 character limit reached

Differentiating Through a Cone Program (1904.09043v4)

Published 19 Apr 2019 in math.OC

Abstract: We consider the problem of efficiently computing the derivative of the solution map of a convex cone program, when it exists. We do this by implicitly differentiating the residual map for its homogeneous self-dual embedding, and solving the linear systems of equations required using an iterative method. This allows us to efficiently compute the derivative operator, and its adjoint, evaluated at a vector. These correspond to computing an approximate new solution, given a perturbation to the cone program coefficients (i.e., perturbation analysis), and to computing the gradient of a function of the solution with respect to the coefficients. Our method scales to large problems, with numbers of coefficients in the millions. We present an open-source Python implementation of our method that solves a cone program and returns the derivative and its adjoint as abstract linear maps; our implementation can be easily integrated into software systems for automatic differentiation.

Citations (119)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.