Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 23 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 93 tok/s
GPT OSS 120B 470 tok/s Pro
Kimi K2 183 tok/s Pro
2000 character limit reached

Efficient Techniques for Shape Optimization with Variational Inequalities using Adjoints (1904.08650v4)

Published 18 Apr 2019 in math.OC

Abstract: In general, standard necessary optimality conditions cannot be formulated in a straightforward manner for semi-smooth shape optimization problems. In this paper, we consider shape optimization problems constrained by variational inequalities of the first kind, so-called obstacle-type problems. Under appropriate assumptions, we prove existence of adjoints for regularized problems and convergence to limiting objects of the unregularized problem. Moreover, we derive existence and closed form of shape derivatives for the regularized problem and prove convergence to a limit object. Based on this analysis, an efficient optimization algorithm is devised and tested numerically.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.