Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Asymptotic normality of generalized maximum spacing estimators for multivariate observations (1904.08625v1)

Published 18 Apr 2019 in math.ST and stat.TH

Abstract: In this paper, the maximum spacing method is considered for multivariate observations. Nearest neighbour balls are used as a multidimensional analogue to univariate spacings. A class of information-type measures is used to generalize the concept of maximum spacing estimators. Asymptotic normality of these generalized maximum spacing estimators is proved when the assigned model class is correct, that is the true density is a member of the model class.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.