Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 73 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Kimi K2 190 tok/s Pro
2000 character limit reached

A Comparison of Policy Search in Joint Space and Cartesian Space for Refinement of Skills (1904.06765v1)

Published 14 Apr 2019 in cs.RO and cs.LG

Abstract: Imitation learning is a way to teach robots skills that are demonstrated by humans. Transfering skills between these different kinematic structures seems to be straightforward in Cartesian space. Because of the correspondence problem, however, the result will most likely not be identical. This is why refinement is required, for example, by policy search. Policy search in Cartesian space is prone to reachability problems when using conventional inverse kinematic solvers. We propose a configurable approximate inverse kinematic solver and show that it can accelerate the refinement process considerably. We also compare empirically refinement in Cartesian space and refinement in joint space.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)