Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 67 tok/s
Gemini 2.5 Pro 36 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 66 tok/s Pro
Kimi K2 170 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Deep reinforcement learning for robust quantum optimization (1904.04712v1)

Published 9 Apr 2019 in quant-ph and physics.comp-ph

Abstract: Machine learning techniques based on artificial neural networks have been successfully applied to solve many problems in science. One of the most interesting domains of machine learning, reinforcement learning, has natural applicability for optimization problems in physics. In this work we use deep reinforcement learning and Chopped Random Basis optimization, to solve an optimization problem based on the insertion of an off-center barrier in a quantum Szilard engine. We show that using designed protocols for the time dependence of the barrier strength, we can achieve an equal splitting of the wave function (1/2 probability to find the particle on either side of the barrier) even for an asymmetric Szilard engine in such a way that no information is lost when measuring which side the particle is found. This implies that the asymmetric non-adiabatic Szilard engine can operate with the same efficiency as the traditional Szilard engine, with adiabatic insertion of a central barrier. We compare the two optimization methods, and demonstrate the advantage of reinforcement learning when it comes to constructing robust and noise-resistant protocols.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube