Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Data-driven discovery of partial differential equation models with latent variables (1904.04314v1)

Published 5 Apr 2019 in cs.NA

Abstract: In spatially extended systems, it is common to find latent variables that are hard, or even impossible, to measure with acceptable precision, but are crucially important for the proper description of the dynamics. This substantially complicates construction of an accurate model for such systems using data-driven approaches. The present paper illustrates how physical constraints can be employed to overcome this limitation using the example of a weakly turbulent quasi-two-dimensional Kolmogorov flow driven by a steady Lorenz force with an unknown spatial profile. Specifically, the terms involving latent variables in the partial differential equations governing the dynamics can be eliminated at the expense of raising the order of that equation. We show that local polynomial interpolation combined with symbolic regression can handle sparse data on grids that are representative of typical experimental measurement techniques such as particle image velocimetry. However, we also find that the reconstructed model is sensitive to measurement noise and trace this sensitivity to the presence of high order spatial and/or temporal derivatives.

Citations (20)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube