Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 40 tok/s
GPT-5 High 38 tok/s Pro
GPT-4o 101 tok/s
GPT OSS 120B 470 tok/s Pro
Kimi K2 161 tok/s Pro
2000 character limit reached

ExCL: Extractive Clip Localization Using Natural Language Descriptions (1904.02755v1)

Published 4 Apr 2019 in cs.CL

Abstract: The task of retrieving clips within videos based on a given natural language query requires cross-modal reasoning over multiple frames. Prior approaches such as sliding window classifiers are inefficient, while text-clip similarity driven ranking-based approaches such as segment proposal networks are far more complicated. In order to select the most relevant video clip corresponding to the given text description, we propose a novel extractive approach that predicts the start and end frames by leveraging cross-modal interactions between the text and video - this removes the need to retrieve and re-rank multiple proposal segments. Using recurrent networks we encode the two modalities into a joint representation which is then used in different variants of start-end frame predictor networks. Through extensive experimentation and ablative analysis, we demonstrate that our simple and elegant approach significantly outperforms state of the art on two datasets and has comparable performance on a third.

Citations (147)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.