Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 92 tok/s
Gemini 2.5 Pro 59 tok/s Pro
GPT-5 Medium 22 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 94 tok/s
GPT OSS 120B 471 tok/s Pro
Kimi K2 212 tok/s Pro
2000 character limit reached

Accelerated method of finding for the minimum of arbitrary Lipschitz convex function (1904.00606v3)

Published 1 Apr 2019 in math.OC

Abstract: The goal of the paper is development of an optimization method with the superlinear convergence rate for a nonsmooth convex function. For optimization an approximation is used that is similar to the Steklov integral averaging. The difference is that averaging is performed over a variable-dependent set, that is called a set-valued mapping (SVM) satisfying simple conditions. Novelty approach is that with such an approximation we obtain twice continuously differentiable convex functions, for optimizations of which are applied methods of the second order. The estimation of the convergence rate of the method is given.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube