Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Global large solution to the compressible Navier-Stokes equations in critical Besov space $\dot{B}^{-1}_{\infty,\infty}$ (1903.09764v1)

Published 23 Mar 2019 in math.AP

Abstract: In this paper, we construct a class of global large solution to the compressible Navier-Stokes equations in the whole space $\Rd$. Precisely speaking, our choice of special initial data whose $\dot{B}{-1}_{\infty,\infty}$ norm can be arbitrarily large, namely, $||u_0||{\dot{B}{-1}{\infty,\infty}}\gg 1$, allows to give rise to global-in-time solution to the compressible Navier-Stokes equations.

Summary

We haven't generated a summary for this paper yet.