2000 character limit reached
Global smooth solutions to Navier-Stokes equations with large initial data in critical space (2502.20059v2)
Published 27 Feb 2025 in math.AP
Abstract: In this paper, we investigate the existence of a unique global smooth solution to the three-dimensional incompressible Navier-Stokes equations and provide a concise proof. We establish a new global well-posedness result that allows the initial data to be arbitrarily large within the critical space $\dot{B}{-1}_{\infty,\infty}$, while still satisfying the nonlinear smallness condition.