Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Individual Differential Privacy: A Utility-Preserving Formulation of Differential Privacy Guarantees (1612.02298v2)

Published 7 Dec 2016 in cs.CR

Abstract: Differential privacy is a popular privacy model within the research community because of the strong privacy guarantee it offers, namely that the presence or absence of any individual in a data set does not significantly influence the results of analyses on the data set. However, enforcing this strict guarantee in practice significantly distorts data and/or limits data uses, thus diminishing the analytical utility of the differentially private results. In an attempt to address this shortcoming, several relaxations of differential privacy have been proposed that trade off privacy guarantees for improved data utility. In this work, we argue that the standard formalization of differential privacy is stricter than required by the intuitive privacy guarantee it seeks. In particular, the standard formalization requires indistinguishability of results between any pair of neighbor data sets, while indistinguishability between the actual data set and its neighbor data sets should be enough. This limits the data controller's ability to adjust the level of protection to the actual data, hence resulting in significant accuracy loss. In this respect, we propose individual differential privacy, an alternative differential privacy notion that offers em the same privacy guarantees as standard differential privacy to individuals (even though not to groups of individuals). This new notion allows the data controller to adjust the distortion to the actual data set, which results in less distortion and more analytical accuracy. We propose several mechanisms to attain individual differential privacy and we compare the new notion against standard differential privacy in terms of the accuracy of the analytical results.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Jordi Soria-Comas (8 papers)
  2. Josep Domingo-Ferrer (41 papers)
  3. David Megías (12 papers)
  4. David Sánchez (40 papers)
Citations (134)

Summary

We haven't generated a summary for this paper yet.