Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A convex programming approach for discrete-time Markov decision processes under the expected total reward criterion (1903.08853v2)

Published 21 Mar 2019 in math.PR and math.OC

Abstract: In this work, we study discrete-time Markov decision processes (MDPs) under constraints with Borel state and action spaces and where all the performance functions have the same form of the expected total reward (ETR) criterion over the infinite time horizon. One of our objective is to propose a convex programming formulation for this type of MDPs. It will be shown that the values of the constrained control problem and the associated convex program coincide and that if there exists an optimal solution to the convex program then there exists a stationary randomized policy which is optimal for the MDP. It will be also shown that in the framework of constrained control problems, the supremum of the expected total rewards over the set of randomized policies is equal to the supremum of the expected total rewards over the set of stationary randomized policies. We consider standard hypotheses such as the so-called continuity-compactness conditions and a Slater-type condition. Our assumptions are quite weak to deal with cases that have not yet been addressed in the literature. An example is presented to illustrate our results with respect to those of the literature.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.