Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Inference for fractional Ornstein-Uhlenbeck type processes with periodic mean in the non-ergodic case (1903.08033v1)

Published 19 Mar 2019 in math.PR, math.ST, and stat.TH

Abstract: In the paper we consider the problem of estimating parameters entering the drift of a fractional Ornstein-Uhlenbeck type process in the non-ergodic case, when the underlying stochastic integral is of Young type. We consider the sampling scheme that the process is observed continuously on $[0,T]$ and $T\to\infty$. For known Hurst parameter $H\in(0.5, 1)$, i.e. the long range dependent case, we construct a least-squares type estimator and establish strong consistency. Furthermore, we prove a second order limit theorem which provides asymptotic normality for the parameters of the periodic function with a rate depending on $H$ and a non-central Cauchy limit result for the mean reverting parameter with exponential rate. For the special case that the periodicity parameter is the weight of a periodic function, which integrates to zero over the period, we can even improve the rate to $\sqrt{T}$.

Summary

We haven't generated a summary for this paper yet.