Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Statistical analysis of the non-ergodic fractional Ornstein-Uhlenbeck process with periodic mean (2009.00052v1)

Published 31 Aug 2020 in math.PR, math.ST, and stat.TH

Abstract: Consider a periodic, mean-reverting Ornstein-Uhlenbeck process $X={X_t,t\geq0}$ of the form $d X_{t}=\left(L(t)+\alpha X_{t}\right) d t+ dBH_{t}, \quad t \geq 0$, where $L(t)=\sum_{i=1}{p}\mu_i\phi_i (t)$ is a periodic parametric function, and ${BH_t,t\geq0}$ is a fractional Brownian motion of Hurst parameter $\frac12\leq H<1$. In the "ergodic" case $\alpha<0$, the parametric estimation of $(\mu_1,\ldots,\mu_p,\alpha)$ based on continuous-time observation of $X$ has been considered in Dehling et al. \cite{DFK}, and in Dehling et al. \cite{DFW} for $H=\frac12$, and $\frac12<H\<1$, respectively. In this paper we consider the "non-ergodic" case $\alpha\>0$, and for all $\frac12\leq H<1$. We analyze the strong consistency and the asymptotic distribution for the estimator of $(\mu_1,\ldots,\mu_p,\alpha)$ when the whole trajectory of $X$ is observed.

Summary

We haven't generated a summary for this paper yet.