Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 73 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Kimi K2 190 tok/s Pro
2000 character limit reached

A transportation approach to the mean-field approximation (1903.08021v1)

Published 19 Mar 2019 in math.PR

Abstract: We develop transportation-entropy inequalities which are saturated for measures such that their log-density with respect to the background measure is an affine function, in the setting of the uniform measure on the discrete hypercube and the exponential measure. In this sense, this extends the well-known result of Talagrand in the Gaussian case. By duality, these transportation-entropy inequalities imply a strong integrability inequality for Bernoulli and exponential processes. As a result, we obtain a dimension-free mean-field approximation of the free energy of a Gibbs measure and a dimension-free nonlinear large deviations bound on the discrete hypercube. Applied to the Ising model, we deduce that the mean-field approximation is within $O(\sqrt{n} ||J||_2)$ of the free energy, where $n$ is the number of spins and $||J||_2$ is the Hilbert-Schmidt norm of the interaction matrix. Finally, we obtain a reverse log-Sobolev inequality on the discrete hypercube similar to the one proved recently in the Gaussian case by Eldan and Ledoux.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube