Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Normalized solutions to the Chern-Simons-Schrödinger system (1903.07306v3)

Published 18 Mar 2019 in math.AP

Abstract: In this paper, we study normalized solutions to the Chern-Simons-Schr\"odinger system, which is a gauge-covariant nonlinear Sch\"oridnger system with a long-range electromagnetic field, arising in nonrelativistic quantum mechanics theory. The solutions correspond to critical points of the underlying energy functional subject to the $L2$-norm constraint. Our research covers several aspects. Firstly, in the mass subcritical case, we establish the compactness of any minimizing sequence to the associated global minimization problem. As a by-product of the compactness of any minimizing sequence, the orbital stability of the set of minimizers to the problem is achieved. In addition, we discuss the radial symmetry and uniqueness of minimizer to the problem. Secondly, in the mass critical case, we investigate the existence and nonexistence of normalized solution. Finally, in the mass supercritical case, we prove the existence of ground state and infinitely many radially symmetric solutions. Moreover, the instability of ground states is explored

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.