Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 32 tok/s
GPT-5 High 27 tok/s Pro
GPT-4o 102 tok/s
GPT OSS 120B 461 tok/s Pro
Kimi K2 227 tok/s Pro
2000 character limit reached

On the Spectrum of Finite, Rooted Homogeneous Trees (1903.07134v2)

Published 17 Mar 2019 in math.RT, cs.OH, and math.CO

Abstract: In this paper we study the adjacency spectrum of families of finite rooted trees with regular branching properties. In particular, we show that in the case of constant branching, the eigenvalues are realized as the roots of a family of generalized Fibonacci polynomials and produce a limiting distribution for the eigenvalues as the tree depth goes to infinity. We indicate how these results can be extended to periodic branching patterns and also provide a generalization to higher order simplicial complexes.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.